Chemistry Letters 1998 149

Synthesis of a Silylene- and Hydride-bridged Re-W Heterobimetallic Complex and Its Photolysis to Form Novel Silenyl-bridged Heterobimetallic Complexes

Hiroyuki Sakaba,* Kazushige Ishida, and Hiroshi Horino*

Department of Chemistry, Graduate School of Science, Tohoku University, Kawauchi, Sendai 980-77

(Received October 23, 1997; CL-970822)

The reaction of cis-Cp*W(CO)₂(MeCN)Me (1) with Cp*(CO)₂Re(H)SiMe₂H (2) gave the silylene- and hydride-bridged heterobimetallic complex Cp*(CO)₂W(μ -SiMe₂)(μ -H)Re(CO)₂Cp* (3). Photolysis of 3 produced an isomeric mixture of novel silenyl-bridged heterobimetallic complexes Cp*(CO)₂HW(μ - η ¹, η ²-SiMeCH₂)ReH(CO)₂Cp* (4).

We have recently reported the synthesis of cis-Cp*W(CO)₂(MeCN)Me (1) and the stereospecific substitution of the labile acetonitrile ligand by phosphines. One of fundamental reactions of such a labile complex is oxidative addition to a coordinatively unsaturated species generated from the complex. An intriguing example is the formation of (CO)₄Mn(µ-SiR₂)(µ-H)Pt(PPh₃)₂ from Mn(CO)₅SiR₂H and Pt(C₂H₄)(PPh₃)₂ via oxidative addition of the Si-H bond of the Mn complex to unsaturated Pt(PPh₃)₂. This Mn-Pt complex is a rare example of silylene- and hydride-bridged heterobimetallic complexes. Here we report a new entry to this class of complexes, a silylene- and hydride-bridged Re-W bimetallic complex using oxidative addition reaction of 1 and the photolysis of the heterobimetallic complex to produce novel silenyl-bridged Re-W bimetallic complexes.

The reaction of 1 with $Cp^*(CO)_2Re(H)SiMe_2H$ (2)³ in toluene took place at room temperature to give $Cp^*(CO)_2W(\mu-SiMe_2)(\mu-H)Re(CO)_2Cp^*$ (3) in 72% isolated yield with evolution of methane.⁶ The formation of 3 can be rationalized by oxidative addition of the Si-H bond of 2 to coordinatively unsaturated $Cp^*(CO)_2WMe$ generated from 1 to give a transient intermediate $Cp^*(CO)_2W(H)(Me)(\mu-SiMe_2)Re(H)(CO)_2Cp^*$. Reductive elimination of methane from the intermediate generates a vacant site at the tungsten center, to which the neighboring rhenium hydride coordinates to produce 3.

A single stereoisomer was produced in the reaction. We tentatively assign it to the *trans* isomer considering the bulkiness of Cp* ligands. The IR spectrum of 3 in KBr showed a very weak broad absorption centered around 940 cm⁻¹ over the range of ca. $800 - 1100 \text{ cm}^{-1}$. This absorption may be assigned to $v_{\text{W-H-Re}}$, since an absorption due to $v_{\text{M-H-M}}$ generally appears very broad at ca. $1100 \pm 300 \text{ cm}^{-1}$. To confirm the assignment, the IR spectrum was compared with

that of the deuterated complex $Cp*(CO)_2W(\mu-SiMe_2)(\mu-D)Re(CO)_2Cp*(3-d, 97\% D)^8$ synthesized by the reaction of 1 with $Cp*(CO)_2Re(D)SiMe_2H$ (2-d, 97% D).9 In the spectrum of 3-d, no very broad absorption was observed in the range of $800 - 1100 \text{ cm}^{-1}$ and a new relatively broad absorption was found at 698 cm^{-1} . The ratio of the absorption frequencies observed for 3 and 3-d is close to the calculated value and hence we assigned the very broad absorption for 3 to ν_{W-H-Re} . No loss of deuteride was observed in the reaction of 1 with 2-d and this observation supports the mechanism described above.

In accord with the assignment of the bridging hydride, the 1 H NMR spectrum of 3 shows a characteristic hydride signal with W-satellites of 37.5 Hz at δ -11.19 along with a very broad SiMe signal at δ 1.05 at room temperature. As expected from the observation of the broad SiMe signal, 3 shows temperature-dependent spectral change. On cooling, the SiMe signal was sharpened and split into two signals (δ 1.35 and 0.91 at -50 °C). The 13 C NMR spectrum at -50 °C showed the expected four sharp CO resonances at δ 232.1 (J_{WC} = 151 Hz), 232.0 (J_{WC} = 164 Hz), 213.8 and 200.5, while the spectrum at room temperature showed a single sharp resonance at δ 231.2 (J_{WC} = 157 Hz) and two weak broad resonances at δ 213.1 and 200.3. These phenomena denote that two dynamic processes, the site exchange of SiMe groups and that of CO ligands, exist in the complex. 10

Another spectral characteristic for 3 is the 29 Si resonance observed at δ 168.3. Similar low-field 29 Si resonances have been observed for silylene-bridged bimetallic complexes. For example, the 29 Si resonance of Cp(CO)Fe(μ -SiH'Bu)(μ -CO)Fe(CO)Cp is observed at δ 254.4.11 Lesser extent of downfield shift observed for 3 seems to reflect the weaker 3-center 2-electron interaction in the W-H-Re moiety compared to the direct metal-metal interaction in the diiron complex and the strong electron-donation to the silylene moiety from two electron rich third raw transition metal fragments.

When a toluene-d₈ solution of 3 in a sealed NMR tube was irradiated with a 100 W medium pressure Hg lamp at 5 °C for 30 min and its ¹H NMR spectrum was observed at -60 °C, two products were observed in a ratio of 3 : 2 (total ca. 50%) along with unreacted 3 (ca. 50%). The reaction mixture had reached to a photostationary state under the conditions and further irradiation did not increase the conversion. The products are characterized as a mixture of two isomers of μ - η ¹, η ²-silenyl-bridged Re-W bimetallic complex 4 by low-temperature NMR spectra, but it is difficult to assign their definite structures

150 Chemistry Letters 1998

among several possible isomeric structures at present. At room temperature the isomers show coalesced ¹H NMR signals and reverts to 3 with $t_{1/2} \approx 40$ min at 25 °C, indicating that they are interconvertible and thermally unstable.

For the major isomer, two hydride signals are observed at δ -9.27 and -9.33 at -60 °C, and the latter signal accompanying W-satellites of 52 Hz is assigned to the WH and the former without satellites to the ReH. The J_{WH} (52 Hz) is considerably larger than that (37.5 Hz) of the bridging hydride in 3. The inequivalent CH₂ protons are resonated at δ 1.39 (dd, J = 9.5, 3.5 Hz) and -0.17 (d, J = 9.5 Hz) in addition to the SiMe (δ 0.92, d, J = 1.8 Hz) and Cp* (δ 1.84 and 1.70) signals. The small couplings of 3.5 and 1.8 Hz observed for the respective signals at δ 1.39 and 0.92 are due to the couplings to the WH.¹² This is evidenced by a decoupling experiment; irradiation of the WH signal changed the doublet of doublets at δ 1.39 and the doublet at δ 0.92 to a doublet (J = 9.5 Hz) and a singlet, respectively.¹³

For the minor isomer, two hydride signals are resonated at δ -8.69 and -11.43 at -60 °C, but they are too broad to observe Wsatellites. When the temperature was lowered to -80 °C, the signals became sharp enough to see the satellites and could be assigned to the WH (δ -8.62, J_{WH} = 51 Hz) and ReH (δ -11.46). These behaviors suggest the existence of the relatively fast exchange process for the hydrides. Although a doublet due to one of the inequivalent CH₂ protons was observed at δ -0.65 (J = 9.1 Hz, -80 °C) in addition to the SiMe (δ 1.15) and Cp* (δ 1.88 and 1.62) signals, the expected counterpart doublet of doublets was not found. To search for it, the ¹H, ¹H COSY spectrum was observed at -80 °C. A cross peak correlated to the doublet at δ -0.65 was found around δ 1.6, in which a very intense Cp* signal (\delta 1.59) of unreacted 3 was resonated. Furthermore, a cross peak correlated to the WH signal at δ -8.62 was also observed around δ 1.6. From these observations, we conclude that the minor product also has a hydrido-silenetungsten skeleton similar to the major product and that the signal due to one of the CH2 protons is probably obscured by the Cp* signal of unreacted 3.

In the ¹³C DEPT 135 spectrum at -50 °C, the expected negative signals assigned to the WCH2 carbons were observed at δ -14.7 (major) and -12.6 (minor) along with positive signals at δ 5.95 (major) and 5.99 (minor) due to the SiCH₃ carbons. Two sets of CO signals were observed at δ 246.3, 236.2, 204.1, and 202.5 (major), and 244.5, 235.0, 205.5, and 202.7 (minor) in the ¹³C(¹H) NMR spectrum at -80 °C. These spectral data for the WH(μ - η^1 , η^2 -SiMeCH₂) moieties, especially the coupling constants, are very similar to those of the closely related η^2 -silene-tungsten complex Cp*(CO)₂WH(η^2 -SiMe₂CH₂) synthesized by Wrighton; δ_{1H} 1.03 (WCHH, dd, J =10, 4 Hz), -0.87 (WCH*H*, d, J = 10 Hz), -10.78 (WH, J_{WH} = 54 Hz), and $\delta_{^{13}C}$ -27.6 (WCH₂) at -73 °C. ¹⁴ The small coupling constant (4 Hz) observed for the signal at δ 1.03 has been assigned to the coupling between the WCH and WH protons. Upfield shift of a ¹³C signal of a coordinated-silene carbon has been observed for isolated silene-transition-metal complexes. 15 Attempts to observe 29 Si NMR and J_{CH} for the WCH2 carbon were unsuccessful because of the low solubility of 3 and the low conversion of 3 to 4.

Although several η^2 -silene complexes have been characterized so far, their synthetic methods are limited to two types of reactions, the intramolecular activation of a Si-H bond of L_nMCH₂SiR₂H complexes and the reductive dechlorination of L_nClMCH₂SiR₂Cl complexes using magnesium. ¹⁶ Recently intermediacy of a silene complex formed by the intramolecular oxidative addition of a C-H bond (β -H elimination of a alkylsilyl group) has been postulated in several reactions, 17 but there is no report on the characterization of a silene complex via such a process. To our knowledge, this is the first spectroscopic characterization of a silene complex resulting from the intramolecular oxidative addition of a C-H bond.

H.S. thanks Dr. H. Tobita of Tohoku University for valuable discussions.

References and Notes

- H. Sakaba, K. Ishida, and H. Horino, Chem. Lett., 1995, 1145.
- J. Powell, J. F. Sawyer, and M. Shiralian, Organometallics, 8, 577
- Complex 2 was synthesized by the reaction of K[Cp*(CO)₂ReH]⁴ with Me₂HSiCl. Although only a single CO resonance was observed in the 13 C NMR spectrum of 2, a relative intensity ratio (1.0) of v_{CO} absorptions at 1972 and 1898 cm⁻¹ suggests a cis configuration. It has been reported that the cis isomer is thermodynamically more stable than the *trans* isomer for Cp(CO)₂Re(H)SiPh₃. Selected data for 2: 1 H NMR (500 MHz, C₆D₅CD₃) δ 4.62 (septet of
 - Selected data for Z: ¹H NMR (300 MHz, C₆D₅CD₅) 8 4.0.2 (septet of doublets, ${}^{3}J_{HSiC_{11}} = 3.7 \text{ Hz}$, ${}^{3}J_{HSiR_{6}II} = 0.6 \text{ Hz}$, 1H, SiH), 1.74 (s, 15H, Cp*), 0.74 (dd, ${}^{3}J_{HCSiH} = 3.7 \text{ Hz}$, ${}^{4}J_{HCSiR_{6}II} = 0.7 \text{ Hz}$, 6H, SiMe), -9.79 (br, 1H, ReH). ${}^{13}C$ (${}^{1}H$) NMR (126 MHz, C₆D₅CD₃) 8 203.5 (CO), 98.3 ($C_{5}Me_{5}$), 10.2 (C₅Me₅) 4.1 (SiMe). ${}^{29}Si$ NMR (99 MHz, C₆D₅CD₃) 8 -14.3. IR (C₆H₆) ν_{CO} = 1972 (s), 1898 (s) cm⁻¹. MS (EI, ${}^{18}7Re$) m/z (relative intensity) 438 (M*, 65). HRMS found 438.1028; calcd for C. H. O.RSI 438 1025 calcd for C₁₄H₂₃O₂ReSi 438.1025.
- C. P. Casey, H. Sakaba, and T. L. Underiner, J. Am. Chem. Soc., 113, 6673 (1991).
- D. F. Dong, J. K. Hoyano, and W. A. G. Graham, Can. J. Chem., 59, 1455 (1981).
- Selected data for 3: ¹H NMR (400 MHz, C₆D₅CD₃, -50 °C) δ 1.95 (s, 15H, Cp*), 1.59 (s, 15H, Cp*), 1.35 (s, 3H, SiMe), 0.91 (s, 3H, SiMe), -11.37 (s, $J_{\rm WH}$ = 37 Hz, 1H, μ H). ¹³C(¹H) NMR (150 MHz, C₆D₅CD₃ -50 °C) δ 232.1 (J_{WC} = 151 Hz, WCO), 232.0 (J_{WC} = 164 Hz, WCO), 213.8 (ReCO), 200.5 (ReCO), 101.3 (C_5 Me₅), 99.5 (C_5 Me₅), 13.0 (SiMe), 12.7 (SiMe), 11.3 (C₅Me₅), 9.9 (C₅Me₅), 18.0 (SiMe), 12.7 (SiMe), 11.3 (C₅Me₅), 9.9 (C₅Me₅). IR (C₆D₅CD₃) ν_{CO} = 1937 (m), 1891 (vs), 1873 (s), 1817 (s) cm⁻¹. MS (FAB, ¹⁸⁴W, ¹⁸⁷Re): m/z (relative intensity) 812 (M⁺, 10). Anal. Found: C, 38.24; H, 4.29%. Calcd for C₂₆H₃₇O₄ReSiW: C, 38.47; H, 4.59%.
- For reviews, see: H. D. Kaesz and R. B. Saillant, Chem. Rev., 72, 231 (1972); D. S. Moore and S. D. Robinson, Chem. Soc. Rev., 12, 415 (1983).
- The D content was calculated from the relative intensity of the remaining ReHW signal to the Cp* signal. Selected data for 3-d: MS (FAB, ¹⁸⁴W, ¹⁸⁷Re) m/z (relative intensity) 813 (M⁺, 5).
- Selected data for 2-d: MS (EI, ¹⁸⁷Re) m/z 439 (relative intensity) (M⁺, 88). HRMS found 439.1078; calcd for C₁₄H₂₂DO₂ReSi 439.1087.
- 10 ΔG^{\dagger}_{297} for the SiMe exchange was calculated to be 58.0 kJ mol⁻¹
- Y. Kawano, H. Tobita, and H. Ogino, J. Organomet. Chem., 428, 125
- (1992) and references therein.
 The WH signal (Δν_{1/2} = 9 Hz) was observed relatively broader compared to the ReH signal (Δν_{1/2} = 5 Hz), but the small couplings were not seen for the WH signal.
- These spin-spin interactions were confirmed by the observation of three cross peaks in the ¹H, ¹H COSY spectrum at -60 °C: δ -9.33 \leftrightarrow 0.92, $-9.33 \leftrightarrow 1.39, -0.17 \leftrightarrow 1.39.$
- C. Lewis and M. S. Wrighton, J. Am. Chem. Soc., 105, 7768 (1983).
- 15 B. K. Campion, R. H. Heyn, T. D. Tilley, and A. L. Rheingold, J. Am. Chem. Soc., 115, 5527 (1993).
- 16 For recent reviews, see: A. G. Brook and M. A. Brook, Adv. Organomet. Chem., 39, 71 (1996); P. D. Lickiss, Chem. Soc. Rev., 21, 271 (1992).
- 17 D. H. Berry and L. J. Procopio, J. Am. Chem. Soc., 111, 4099 (1989); A. A. Zlota, F. Frolow, and D. Milstein, J. Chem. Soc., Chem. Commun., 1989, 1826; H. Yamashita, A. M. Kawamoto, M. Tanaka, and M. Goto, Chem. Lett., 1990, 2107; P. I. Djurovich, P. J. Carroll, and D. H. Berry, Organometallics, 13, 2551 (1994); P. I. Djurovich, A. R. Dolich, and D. H. Berry, J. Chem. Soc., Chem. Commun., 1994, 1897; H. Yamashita and M. Tanaka, Bull. Chem. Soc. Jpn., 68, 403 (1995) and refereces therein.